TrueJet uniform-hole perforating charges

Improve fracture distribution and reservoir communication

TrueJet™ perforating charges from Baker Hughes, a GE company (BHGE), create uniform entry holes, helping customers to improve fracture distribution and reservoir communication in unconventional wells. Developed through extensive testing and modeling, the charges deliver perforations with a consistent entry-hole diameter and shape, regardless of gun configuration, orientation, or position within the casing.

Unlike many conventional charges that can create rugose, multi-sized perforations that adversely affect flow efficiency and treatment delivery, the uniform holes generated by TrueJet charges help to optimize the efficiency of the perforation clusters, ensuring even distribution of fracture fluids and/or proppant. The uniform holes also enable reliable diversion rates and designed treatment pressures, ensuring stimulation programs can be executed to plan.

TrueJet perforating charges are fully compatible with industry-standard perforating hardware and have undergone comprehensive testing and qualification using API RP 19B practices. The charges have also been qualified under stressed rock conditions and are available in both RDX and HMX versions.

Contact your local BHGE representative today to learn more about how TrueJet perforating charges can help you improve fracturing treatments and reservoir access in your next unconventional well.

Applications
- Unconventional reservoirs
- Vertical and horizontal wells
- Wireline, slickline, and tubing-conveyed operations

Benefits
- Generates uniformly sized and shaped entry holes
- Improves flow efficiency of perforation clusters
- Enables uniform stimulation treatment distribution
- Enables reliable diversion rates and designed treatment pressures
- Offers full compatibility with industry-standard perforating hardware
- Meets API RP 19B qualification

bhge.com
<table>
<thead>
<tr>
<th>Charge description</th>
<th>Charge size</th>
<th>Charge part number</th>
<th>Net explosive weight</th>
<th>Casing specifications</th>
<th>Average hole size</th>
<th>Hole size variance</th>
<th>Stressed sandstone penetration*</th>
<th>API concrete penetration data</th>
</tr>
</thead>
<tbody>
<tr>
<td>TrueJet RDX charge</td>
<td>2¾ in.</td>
<td>A1011713200</td>
<td>16 gm</td>
<td>4½ in., 11.6# P110</td>
<td>0.36 in.</td>
<td>7.4%</td>
<td>8.6 in.</td>
<td>15.5 in.</td>
</tr>
<tr>
<td></td>
<td>3 in.</td>
<td>A1012270200</td>
<td>23 gm</td>
<td>5½ in., 23# P110</td>
<td>0.41 in.</td>
<td>4.5%</td>
<td>7.5 in.</td>
<td>14.5 in.</td>
</tr>
<tr>
<td></td>
<td>3½ in.</td>
<td>A1011714200</td>
<td>23 gm</td>
<td>5½ in., 20# P110</td>
<td>0.41 in.</td>
<td>8.9%</td>
<td>8.0 in.</td>
<td>14.5 in.</td>
</tr>
</tbody>
</table>

*Penetration test performed in Berea Sandstone at 6,500 psi (448 bar) unconfined compressive strength with 9,500 psi (655 bar) overburden pressure

TrueJet perforating charges create uniform entry hole sizes with less than 10% deviation, helping to improve flow efficiency and reservoir access.